

Acceptor hydroxyl group mapping for calf thymus α -(1 \rightarrow 3)-galactosyltransferase and enzymatic synthesis of α -D-Galp-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)- β D-GlcpNAc analogs

Keiko Sujino a,b, Carles Malet a, Ole Hindsgaul A, Monica M. Palcic a,*

^a Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
^b The Noguchi Institute, 1-8-1, Kaga, Itabashi-ku, Tokyo 173, Japan

Received 30 April 1997; accepted 21 August 1997

Abstract

The epitope of the acceptor substrate for α - $(1 \rightarrow 3)$ -galactosyltransferase from calf thymus has been mapped by using a series of mono-deoxygenated and mono-O-alkylated Type II (β -D-Galp- $(1 \rightarrow 4)$ - β -D-GlcpNAc) disaccharides. The 4-OH group of the β -D-galactopyranosyl residue is a key polar group essential for glycosyl transfer, tolerating neither deoxygenation nor O-alkylation. Substitution at positions 6 and 6' by a variety of polar alkyl substituents was readily tolerated, allowing the preparative enzymatic synthesis of a series of trisaccharide derivatives carrying polar substituents on each of these hydroxyl groups. These new analogs are potential inhibitors of *Clostridium difficile* toxin A and of a human anti- α -Gal antibody. © 1998 Elsevier Science Ltd.

Keywords: α -(1 \rightarrow 3)-Galactosyltransferase; α -D-Galp-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)- β -D-GlcpNAc, analogs

1. Introduction

 α -(1 \rightarrow 3)-Galactosyltransferase (α -(1 \rightarrow 3) GalT, E.C. 2.4.1.151) catalyzes the transfer of D-galactopyranose from UDP-Gal to the 3' hydroxyl group of β -D-Galp-(1 \rightarrow 4)- β -D-GlcpNAc-OR to yield α -D-Galp-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)- β -D-GlcpNAc-OR (Scheme 1). This enzyme has garnered interest because of the discovery of a naturally occurring human antibody to glycoconjugates bearing a non-reducing

terminal α -D-Gal p-(1 \rightarrow 3)- β -D-Gal p-(1 \rightarrow 4)- β -D-GlcpNAc-OR sequence [1–4].

The interaction between oligosaccharides and proteins, including enzymes, is frequently based on the recognition of only a few of the hydroxyl groups on the carbohydrate moiety [5–7]. In this study, the identity of these key hydroxyl groups on the acceptor for α -(1 \rightarrow 3) GalT isolated from calf thymus was established utilizing monodeoxygenated and monosubstituted β -D-Galp-(1 \rightarrow 4)- β -D-GlcpNAc-OR derivatives in which R are alkyl groups. The ability of α -(1 \rightarrow 3) GalT to glycosylate analogs permitted

^{*} Corresponding author.

 α -D-Galp-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)- β -D-GlcpNAc-OR

Scheme 1. Synthesis of α -D-Galp-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)- β -D-GlcpNAc-OR catalyzed by α -(1 \rightarrow 3)-Galactosyltransferase.

the preparative enzymatic synthesis of 10 analogs of this trisaccharide carrying polar substituents on the hydroxyl groups. These new α -D-Galp-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)- β -D-GlcpNAc-OR analogs are potential inhibitors of both the anti- α -Gal antibody and toxin A of *Clostridium difficile* which is the causative agent of pseudomembranous colitis [2].

2. Results and discussion

Enzymatic assays.—A series of monodeoxygenated Type II (β -D-Galp-(1 \rightarrow 4)- β -D-GlcpNAc) derivatives (3, 8, 13, 18, 23), as well as Type II derivatives bearing four kinds of polar functional groups (4-7, 9-12, 14-17, 19-22, 24-27) [8] were initially screened as potential acceptors for the α -(1) \rightarrow 3) GalT. The lactose derivative 2 and both natural and monodeoxygenated Type I (β -D-Galp-(1 \rightarrow 3)- β -D-GlcpNAc) derivatives (28, 29) were also evaluated. The relative rates of galactosylation are shown in Table 1 where they are compared against the unmodified Type II acceptor 1. The conclusions of this screening are that: (1) both deoxygenation and O-substitution were tolerated at OH-6, 2', and 6' of Type II derivatives; (2) only deoxygenation was tolerated at OH-3 of Type II derivatives; (3) neither deoxygenation nor substitution were tolerated at the OH-4' of Type II derivatives. These results demonstrate that the OH-4' of Type II acceptors is a key polar group for the α -(1 \rightarrow 3) GalT; (4) although Type I structures are known to be substrates [9], the 4-deoxy Type I derivative 29 was found to be equally active. These results are summarized schematically in Fig. 1.

Preparative synthesis of trisaccharide analogs.— The eleven natural and modified disaccharides which were found to be substrates for α -(1 \rightarrow 3) GalT were preparatively galactosylated utilizing this enzyme in the presence of the donor of UDP-Gal (Scheme 1 and Table 2). In these reactions, UDP is produced as the reaction progresses. Since it is a potent inhibitor of this enzyme, alkaline phosphatase was added to degrade UDP to uridine, which is less-inhibitory. In every case, TLC showed the formation of a single product which was easily isolated by sequential column chromatography on reverse-phase C₁₈ silica and Iatrobeads. The yields ranged from 35 to 97%. The details of the syntheses are summarized in Table 3. All products were stable to purification except for 35 which was isolated along with the amide derivative 34 as a result of hydrolysis of the amidine group. The structures of the products were confirmed by their ¹H NMR and mass spectral data (Table 4). The characteristic H-1 protons of galactose in α -configuration were present at 5.1-5.2 ppm with coupling constants of 3.6–4.0 Hz as expected [10,11]. The mass spectra confirmed that a single galactosyl residue had been added to each acceptor. Evaluation of the toxin binding ability of these products is in progress and the results will be reported elsewhere.

3. Experimental

Materials.—Calf thymus α -(1 \rightarrow 3) GalT was isolated according to literature procedures [12]. Compounds 1, 2, 3, 13, 28 and 29 were synthesized as previously described [13,14]. Compounds 4-7, 9-12, 14-17, 19-22, 24-27 were also synthesized as previously described [8]. Compounds 8, 18 and 23 were generous gifts from R.U. Lemieux. UDP-Gal (Na+ salt) was from Sigma. Alkaline phosphatase (1 $U/\mu L$) from calf intestine was from Boehringer Mannheim. EcoLite (+) was from ICN. TLC was conducted on glass plates precoated with 250 μ m layers of Silica Gel 60F₂₅₄ (E. Merck, Darmstadt). 'Iatrobeads' refers to a beaded silica gel (Product No. 6RS-8060) from Iatron Laboratories (Tokyo). C₁₈ Sep-Pak cartridges were from Waters. Millex-GV filters (0.22 μ m) were from Millipore. ¹H NMR spectroscopy was performed on a Bruker AMR-360 (360 MHz) operating at ambient temperature. For 30, a Varian UNITY 500 (500 MHz) instrument was used. Only partial NMR data are reported and the remaining data were in accordance with the proposed structures. HRMS spectra were recorded on a Micromass ZabSpec Hybrid Sector-TOF using a 1% solution of CH₃COOH in 1:1 water:MeOH as the liquid carrier.

Radiochemical assay.—Standard enzyme assays contained the following components: a disaccharide

Table 1 Relative rates of α -(1 \rightarrow 3) GalT catalyzed glycosylation

		R ¹	\mathbb{R}^2	relative rate ⁴ (%)
OH HO R ²	1	(CH ₂) ₈ CO ₂ Me	NHAc	100
ОНООН	2	(CH ₂) ₈ CO ₂ Me	ОН	31
	3	(CH ₂) ₈ CO ₂ Me	Н	55
OH	4	(CH2)7CH3	OCH ₂ CH ₂ NH ₂	1>
NHAC OR1	5	(CH ₂) ₇ CH ₃	OCH ₂ CO ₂ H	<1
)— OH \OH	6	(CH ₂) ₇ CH ₃	OCH ₂ CONH ₂	<1
	7	(CH ₂) ₇ CH ₃	OCH ₂ C(NH ₂) ₂ +Cl ⁻	<1
	8	Me	Н	76
OH	9	(CH ₂) ₇ CH ₃	OCH ₂ CH ₂ NH ₂	11
HO NHAC OR	10	(CH ₂) ₇ CH ₃	OCH ₂ CO ₂ H	54
)	11	(CH ₂) ₇ CH ₃	OCH ₂ CONH ₂	56
	12	(CH ₂) ₇ CH ₃	OCH ₂ C(NH ₂) ₂ +Cl	10
	13	(CH ₂) ₈ CO ₂ Me	Н	25
OU.	14	$(CH_2)_7CH_3$	OCH ₂ CH ₂ NH ₂ ·HCl	5
HO OR OR	15	$(CH_2)_7CH_3$	OCH ₂ CO ₂ H	1
HO R COH	16	(CH ₂) ₇ CH ₃	OCH ₂ CONH ₂	1
	17	(CH ₂) ₇ CH ₃	OCH ₂ C(NH ₂) ₂ ⁺ Cl ⁻	1
	18	(CH ₂ CH ₂ O) ₂ CH ₂ CO ₂ Me	Н	76 2 11 54 56 2 10 25 2 HCl 5 1 1 3 + Cl 1 3 + Cl 1 3 + Cl 2 3 + Cl 3 3 + C
D2 OH UO NHAC	19	$(CH_2)_7CH_3$	OCH ₂ CH ₂ NH ₂ ·HCl	
OH OH	20	$(CH_2)_7CH_3$	OCH ₂ CO ₂ H	<1
5 , 1	21	(CH ₂) ₇ CH ₃	OCH ₂ CONH ₂	<1>
	22	(CH ₂) ₇ CH ₃	OCH ₂ C(NH ₂) ₂ ⁺ Cl ⁻	<1
	23	(CH ₂ CH ₂ O) ₂ CH ₂ CO ₂ Me	Н	39
2	24	(CH ₂) ₇ CH ₃	OCH ₂ CH ₂ NH ₂ ·HCl	20
HO NHAC OR1	25	(CH ₂) ₇ CH ₃	OCH ₂ CO ₂ H	7
→ OH <oh< td=""><th>26</th><td>$(CH_2)_7CH_3$</td><td>OCH₂CONH₂</td><td>7</td></oh<>	26	$(CH_2)_7CH_3$	OCH ₂ CONH ₂	7
	27	(CH ₂) ₇ CH ₃	OCH ₂ C(NH ₂) ₂ ⁺ Cl ⁻	5
O OH OH	28	(CH ₂) ₈ CO ₂ Me	ОН	4
OH NHAC	29	$(CH_2)_8CO_2Me$	Н	3

^aThe concentration of each analog was 540 μ M.

analog (10.8 nmol), UDP-Gal (10 nmol), UDP-[6- 3 H]Gal (about 100,000 dpm), 4 μ L of assay buffer (500 mM sodium cacodylate, 250 mM manganese(II) chloride, 4% Triton X-100, 5 mg/mL BSA, pH 6.0), 7 μL of buffer (30 mM sodium cacodylate, 20 mM manganese(II) chloride, 0.1% Triton X-100, pH 6.5), and enzyme solution (30 mM sodium cacodylate, 20 mM manganese(II) chloride, 0.3% Triton X-100, pH 6.5, 8 μ L, 50 μ U) and water to 20 μ L final volume. Reaction mixtures were incubated for 30 min at 37 °C, diluted with water to 200 µL and loaded onto a C₁₈ Sep-Pak cartridge which was pre-equilibrated with MeOH (10 mL) and water (10 mL). The cartridge was washed with water (50 mL) and the product was eluted with MeOH (4 mL). The radioactivity of the MeOH eluates were quantitated by liquid scintillation in EcoLite (+) scintillation cocktail (10 mL). For compound 8, which did not have a hydrophobic aglycone, anion exchange resin (Bio-Rad AG 1×8 resin, 50–100 mesh, chloride form) was used to remove the unreacted radiolabeled donor from reaction product.

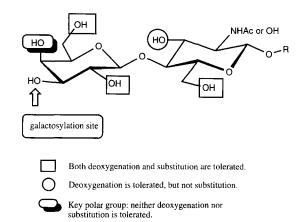


Fig. 1. Structural requirements of Type II acceptors for calf thymus α -(1 \rightarrow 3) GalT.

Representative preparative synthesis.—Disaccharide 11 (2.2 mg, 4.0 nmol), UDP-Gal (1.2 mg, 1.9 nmol), and alkaline phosphatase (1 U/ μ L, 10 μ L) were combined with a solution of α -(1 \rightarrow 3) GalT (9 mU/mL, 1 mL) containing 30 mM sodium cacody-

Table 2 Structure of galactosylated products

		R ¹	R^2	R ³	R ⁴
	30	(CH ₂) ₈ CO ₂ Me	NHAc	ОН	ОН
	31	(CH ₂) ₈ CO ₂ Me	ОН	ОН	ОН
	32	$(CH_2)_7CH_3$	NHAc	OCH ₂ CH ₂ NH ₂	ОН
HO OH	33	$(CH_2)_7CH_3$	NHAc	OCH ₂ CO ₂ H	ОН
HO HO R^4 HO R^2 OR^1	34	$(CH_2)_7CH_3$	NHAc	OCH ₂ CONH ₂	ОН
OH R3	35	$(CH_2)_7CH_3$	NHAc	OCH ₂ C(NH ₂) ₂ ⁺ Cl ⁻	ОН
	36	$(CH_2)_7CH_3$	NHAc OH		OCH ₂ CH ₂ NH ₂ ·HCl
	37	$(CH_2)_7CH_3$	NHAc	ОН	OCH ₂ CO ₂ H
	38	$(CH_2)_7CH_3$	NHAc	ОН	OCH ₂ CONH ₂
	39	$(CH_2)_7CH_3$	NHAc	ОН	OCH ₂ C(NH ₂) ₂ ⁺ Cl ⁻
HO OH HO OH NHAC	40	(CH ₂) ₈ CO ₂ Me			

Table 3
Summary of reaction conditions for preparative enzymatic glycosylation

Starting material (mg)	UDP-Gal (eq./SM)	Enzyme ^a (mU)	Volume ^b (mL)	Reaction temperature and time	Product (mg)	Yield (%)
1 (10.0)	2.4	45	5.0	37 °C, 67 h	30 (11.6)	06
2 (3.0)	4.4	51	1.4	37 °C, 191 h	31 (3.0)	92
9 (2.2)	3.9	=	1.3	37 °C, 121 h	32 (1.8)	63
10 (2.3)	2.8	6	1.0	37 °C, 72 h	33 (2.9)	26
11 (2.2)	3.0	6	1.0	37 °C, 92 h	34 (2.7)	94
12 (2.4)	3.2	11	1.2	37 °C, 146 h	35 (1.2)	38
24 (2.8)	4.1	208	2.7	22 °C, 439 h	36 (1.3)	35
25 (3.0)	4.8	300	3.9	37 °C, 61 h, r.t. 366 h	37 (1.2)	41
26 (2.8)	2.1	26	2.1	37 °C, 50 h, r.t. 67 h	38 (3.5)	96
27 (3.2)	1.3	92	1.2	22 °C, 233 h	39 (2.7)	29
28 (2.0)	9.7	44	1.2	37 °C, 45 h, r.t. 233 h	40 (1.9)	73

^aValues represent a single aliquot of enzyme added to samples 10 and 11, and the sum of several aliquots added to each of the other samples. ^bFinal volume of reaction mixture.

Table 4 Selected ¹H NMR and HRMS data for trisaccharides **30–40**

	Select	ed ¹ H NMR dat	aª		HRMS	R_f^e				
	Ref.b	GlcNAc H-1 ^c	NHAc	Galβ4 H-1°	Galα3 H-1	$R^1CH_2R^{2d}$	Calcd. for	m/z	Found	
30	A	4.52-4.54	2.04	4.55 (7.8)	5.15 (4.0)	_	C ₃₀ H ₅₄ NO ₁₈	716.3341	716.3345	0.20^{1}
31	В	4.52 (7.8) ^f		4.48 (8.0)	5.14 (3.8)	_	$C_{28}H_{50}O_{18}$	675.3075	675.3070	0.09^{2}
32	A	4.52 (7.7)	2.06	4.55 (7.8)	5.17 (3.8)	2.99 - 3.04	$C_{30}^{50}H_{57}^{50}N_{2}O_{16}$	701.3708	701.3710	0.67^{3}
33	A	4.56 (7.3)	2.06	4.60 (7.8)	5.17 (3.8)	3.76	$C_{30}H_{54}NO_{18}$	716.3341	716.3345	0.21^{4}
34	В	4.50 (7.8)	2.06	4.54 (7.8)	5.14 (3.8)	4.12	$C_{30}^{50}H_{55}^{54}N_2O_{17}^{5}$	715.3501	715.3506	0.21^{5}
35	A	4.51 (7.5)	2.06	4.57 (7.9)	5.17 (3.9)	4.52	$C_{30}H_{56}N_3O_{16}$	714.3669	714.3659	0.22^{4}
36	A	4.56 (7.8)	2.06	4.57 (7.9)	5.16 (3.8)	3.14 - 3.17	$C_{30}^{50}H_{57}^{50}N_2O_{16}^{10}$	701.3708	701.3703	0.27^{4}
37	Α	4.52 - 4.56	2.06	4.59 (7.8)	5.18 (3.8)	3.77	$C_{30}^{50}H_{54}^{57}N_1O_{18}$	716.3341	716.3343	0.36^{6}
38	Α	4.54-4.57	2.06	4.58 (8.4)	5.16 (3.6)	4.12 (0.92)	$C_{30}^{30}H_{55}^{37}N_2O_{17}^{10}$	715.3501	715.3499	0.24^{4}
39	Α	4.55 (8.2)	2.06	4.58 (8.8)	5.16 (3.9)	4.51	$C_{30}H_{56}N_3O_{16}$	714.3661	714.3665	0.19^{4}
40	В	4.55 (7.8)	2.02	4.49 (7.7) ^g	5.14 (3.9)		$C_{30}^{50}H_{54}^{50}NO_{18}$	716.3341	716.3340	0.08^{2}

^aNumbers in parentheses give coupling constants in Hz.

late, 20 mM manganese(II) chloride, 0.1% Triton X-100, pH 6.5. This mixture was incubated at 37 °C for 4 days. Five additional aliquots of UDP-Gal (total 10 nmol) were added during the incubation period. When TLC (130:70:1 CH₂Cl₂-MeOH-water) showed the complete disappearance of the starting acceptor, the solution was filtered through glass wool and loaded onto a C₁₈ Sep-Pak cartridge which was pre-equilibrated with MeOH (10 mL) then water (10 mL). The cartridge was washed with water (40 mL) and product was eluted with MeOH (60 mL). The MeOH eluate was concentrated and the resulting residue was loaded onto a column of Iatrobeads (0.98 g) which was eluted with 9:1 CH₂Cl₂-MeOH, then 130:70:1 CH₂Cl₂-MeOH-water (15 mL). The fractions containing product were collected and concentrated. The residue was loaded onto a C₁₈ Sep-Pak cartridge and the cartridge was washed with water (15 mL) then MeOH (25 mL). The MeOH eluate was concentrated and the product was dissolved in water (10 mL). This solution was passed through a Millex-GV filter (0.22 μ m), and the filtrate was lyophilized to yield a fluffy white powder (34, 2.7 mg, 3.8 μ mol, 94%).

Acknowledgements

We thank Dr. Hong Li and Ms. Catharine A. Compston for their helpful advice. We also thank Dr. V. Kamath, Dr. T. Uchiyama, and Mr. H. Jiao for preparing some of the disaccharides and Dr. A. Morales for mass spectrometry. This study was funded by an NSERC/NRC Industrial Partnership Grant from the Natural Sciences and Engineering Research of Canada.

References

- [1] U. Galili, E.A. Rachmilewitz, A. Peleg, and I. Flechner, *J. Exp. Med.*, 160 (1984) 1519–1531.
- [2] S. Teneberg, I. Lönnroth, J.F.T. López, U. Galili, M.Ö. Halvarsson, J. Ångström, and K.-A. Karlsson, *Glycobiology*, 6 (1996) 599–609.
- [3] D.H. Joziasse, N.L. Shaper, L.S. Salyer, D.H. van den Eijnden, A.C. van der Spoel, and J.H. Shaper, *Eur. J. Biochem.*, 191 (1990) 75–83.
- [4] (a) G.V. Reddy, R.K. Jain, B.S. Bhatti, and K.L. Matta, *Carbohydr. Res.*, 263 (1994) 67–77. (b) K.G.I. Nilsson, *Tetrahedron Lett.*, 38 (1997) 133–136.
- [5] R.U. Lemieux, Chem. Soc. Rev., 18 (1989) 347-374.
- [6] C.P.J. Glaudemans, Chem. Rev., 91 (1991) 25–33.

^bA: Me in octyl group was used as a reference, 0.885; B: Acetone = 2.225.

^cMay be interchangeable.

^d For **32** OCH₂CH₂NH₂; for **33** and **37** OCH₂COOH; for **34** and **38** OCH₂CONH₂; for **35** and **39** OCH₂C(NH₂)⁺₂Cl⁻; for **36** OCH₂CH₂NH₂·HCl.

^{e1}65:35:1 CH₂Cl₂-MeOH-H₂O.

 $^{^{2}}$ 40:10:1 EtOAc-MeOH-H $_{2}$ O.

 $^{^{3}}_{4}3:5:35\% \text{ NH}_{3} \text{ in H}_{2}\text{O-MeOH-CH}_{2}\text{Cl}_{2}.$

⁴65:35:5:2 CH₂Cl₂-MeOH-H₂O-AcOH.

⁵130:70:1 CH₂Cl₂-MeOH-H₂O.

⁶30:25:7:3 EtÖAc–MeOH–H₂O–AcOH.

Gle H-1.

gGal\beta3 H-1.

- [7] (a) D.R. Bundle, *Pure. Appl. Chem.*, 61 (1989) 1171–1180.
 (b) J. Kihlberg, S.J. Hultgren, S. Normark, and G. Magnusson, *J. Am. Chem. Soc.*, 111 (1989) 6364–6368.
 (c) M.R. Sierks, K. Bock, S. Refn, and B. Svensson, *Biochemistry*, 31 (1992) 8972–8977.
- [8] C. Malet and O. Hindsgaul, *Carbohydr. Res.*, in press.
- [9] W.M. Blanken and D.H. van den Eijnden, *J. Biol. Chem.*, 260 (1985) 12927–12934.
- [10] A. Seppo, L. Penttilä, R. Niemelä, H. Maaheimo, and O. Renkonen, A. Keane, *Biochemistry*, 34 (1995) 4655–4661.

- [11] C.H. Hokke, A. Zervosen, L. Elling, D.H. Joziasse, and D.H. van den Eijnden, *Glycoconj. J.*, 13 (1996) 687–692.
- [12] U.J. Nilsson, L.D. Heerze, Y.-C. Liu, G.D. Armstrong, M.M. Palcic, and O. Hindsgaul, *Bioconj. Chem.*, 8 (1997) 466–471.
- [13] D.P. Khare, O. Hindsgaul, and R.U. Lemieux, *Carbohydr. Res.*, 136 (1985) 285–308.
- [14] K.B. Wlasichuk, M.A. Kashem, P.V. Nikrad, P. Bird, C. Jiang, and A.P. Venot, J. Biol. Chem., 268 (1993) 13971–13977.